Back to Blog
NV-Center Diamond Physics: The Science Behind Room-Temp Qubits

NV-Center Diamond Physics: The Science Behind Room-Temp Qubits

February 2, 2026
23 min read
Tushar Agrawal

Deep dive into nitrogen-vacancy center physics. Understand electron spin dynamics, energy levels, coherence times, and how diamond enables quantum computing at room temperature.

Understanding the Quantum Heart of Your Room-Temperature Processor

In Part 1, we introduced the revolutionary concept of room-temperature quantum computing using NV-center diamond technology. Now, let's dive deep into the physics that makes this possible.

This post will take you from the crystal structure of diamond all the way to the quantum mechanics of electron spin manipulation. By the end, you'll understand why NV centers work as qubits at room temperature - not just that they work.

---

Part 1: Diamond - Nature's Perfect Quantum Chip

Why Diamond is Special

Diamond isn't just valuable jewelry - it's one of the most remarkable materials in physics.

Diamond Properties
==================

Property              │ Value           │ Why It Matters for Qubits
──────────────────────┼─────────────────┼────────────────────────────
Crystal Structure     │ Tetrahedral     │ Perfect lattice = low noise
                      │ (sp³ bonds)     │
                      │                 │
Thermal Conductivity  │ 2200 W/m·K      │ Heat dissipates quickly
                      │ (5x copper!)    │ Prevents thermal damage
                      │                 │
Band Gap              │ 5.5 eV          │ Optically transparent
                      │                 │ Light passes through easily
                      │                 │
Nuclear Spin (C-12)   │ Zero            │ No magnetic interference
                      │ (98.9% natural) │ from surrounding atoms
                      │                 │
Debye Temperature     │ 2200 K          │ Stable phonon spectrum
                      │                 │ Robust at room temp
                      │                 │
Hardness              │ 10 (Mohs)       │ Mechanically stable
                      │                 │ Resistant to damage

The Diamond Crystal Lattice

Diamond has a face-centered cubic (FCC) crystal structure with a two-atom basis. Each carbon atom bonds to four neighbors in a tetrahedral arrangement:

Diamond Unit Cell
=================

View 1: The Tetrahedral Bond
────────────────────────────

              C (top)
              │
              │  109.5°
             / \
            /   \
           /     \
          C ───── C ───── C
           \     /
            \   /
             \ /
              C (bottom)

Each carbon has exactly 4 neighbors
Bond angle: 109.5° (tetrahedral)
Bond length: 1.54 Å


View 2: The Crystal Lattice (simplified 2D)
───────────────────────────────────────────

Layer n:     C ─── C ─── C ─── C
             │╲   ╱│╲   ╱│╲   ╱│
             │ ╲ ╱ │ ╲ ╱ │ ╲ ╱ │
             │  C  │  C  │  C  │
             │ ╱ ╲ │ ╱ ╲ │ ╱ ╲ │
             │╱   ╲│╱   ╲│╱   ╲│
Layer n+1:   C ─── C ─── C ─── C

The 3D structure is a repeating pattern
of these tetrahedral units.

Why C-12 Matters: Nuclear Spin and Coherence

Natural carbon is 98.9% carbon-12 (C-12) and 1.1% carbon-13 (C-13). This matters enormously:

Carbon Isotopes and Nuclear Spin
================================

CARBON-12 (98.9% natural abundance)
───────────────────────────────────
Protons:  6
Neutrons: 6
Nuclear spin: I = 0 (ZERO!)

→ Creates NO magnetic noise
→ The "quiet" isotope


CARBON-13 (1.1% natural abundance)
──────────────────────────────────
Protons:  6
Neutrons: 7
Nuclear spin: I = 1/2

→ Creates magnetic fluctuations
→ The "noisy" isotope


Effect on Qubit Coherence:
──────────────────────────

Natural diamond (1.1% C-13):
┌────────────────────────────────────┐
│ NV electron spin surrounded by    │
│ random C-13 nuclear spins         │
│                                    │
│     13C    12C    12C    13C      │
│       ↑      ·      ·      ↓      │
│     12C    [NV]   12C    12C      │
│       ·      ●      ·      ·      │
│     12C    13C    12C    12C      │
│       ·      ↑      ·      ·      │
│                                    │
│ C-13 spins create fluctuating     │
│ magnetic field → decoherence      │
│                                    │
│ Coherence time T2 ~ 2 ms          │
└────────────────────────────────────┘


Isotopically pure C-12 diamond (99.99%):
┌────────────────────────────────────┐
│ NV electron spin in "quiet" bath  │
│                                    │
│     12C    12C    12C    12C      │
│       ·      ·      ·      ·      │
│     12C    [NV]   12C    12C      │
│       ·      ●      ·      ·      │
│     12C    12C    12C    12C      │
│       ·      ·      ·      ·      │
│                                    │
│ No nuclear spin noise!            │
│                                    │
│ Coherence time T2 ~ 1.8 SECONDS!  │
│ (1000x improvement!)              │
└────────────────────────────────────┘

---

Part 2: The NV Center - Anatomy of a Qubit

What Creates an NV Center?

An NV center is a specific defect in the diamond lattice consisting of: 1. A nitrogen atom substituting for a carbon atom 2. An adjacent vacancy (missing carbon atom)

NV Center Formation
===================

Step 1: Perfect Diamond Lattice
───────────────────────────────

    C ─── C ─── C ─── C
    │     │     │     │
    C ─── C ─── C ─── C
    │     │     │     │
    C ─── C ─── C ─── C


Step 2: Nitrogen Substitution
────────────────────────────

    C ─── C ─── C ─── C
    │     │     │     │
    C ─── N ─── C ─── C      N replaces C
    │     │     │     │
    C ─── C ─── C ─── C


Step 3: Adjacent Vacancy Creation
─────────────────────────────────

    C ─── C ─── C ─── C
    │     │     │     │
    C ─── N ─── V ─── C      V = empty site
    │     │     │     │
    C ─── C ─── C ─── C

    The N-V pair = NV center


3D View of NV Center:
────────────────────

           C
          /|\
         / | \
        /  |  \
       C───N   C          N = Nitrogen
        \  |  /           V = Vacancy
         \ | /            C = Carbon
          \|/
           V
          /|\
         / | \
        C  C  C

The N-V axis defines the qubit's
quantization axis.

The NV⁻ Charge State

The NV center can exist in different charge states. For quantum computing, we want the negatively charged NV⁻ (also written NV−):

NV Charge States
================

NV⁰ (Neutral):
──────────────
• 5 electrons total
• Not suitable for quantum computing
• Different optical properties

NV⁻ (Negative): ← THE ONE WE USE
────────────────
• 6 electrons total
• Extra electron captured from lattice
• This is our qubit!


Electron Configuration of NV⁻:
──────────────────────────────

Nitrogen contributes:     5 electrons
3 dangling bonds from C:  3 electrons
Extra electron:           1 electron
                         ───────────
Total:                    6 electrons (but only 6 active)

Wait, that's 9 electrons!

Actually:
- N has 5 valence electrons
- N uses 3 for bonds to C neighbors
- N contributes 2 to NV system

So: 2 (from N) + 3 (dangling) + 1 (extra) = 6

These 6 electrons form the NV⁻ electronic structure.

---

Part 3: NV Center Energy Levels

This is where the quantum magic happens. The energy levels of NV⁻ determine everything about how we use it as a qubit.

Ground State Triplet

The ground state of NV⁻ is a spin triplet (S = 1), meaning it has three sub-levels:

NV⁻ Ground State Energy Levels
==============================

Energy ↑
       │
       │    ┌──────────────────────────────┐
       │    │         ms = +1              │  ← "Spin up"
       │    │    ──────────────────────    │
       │    │           │                  │
       │    │       D ≈ 2.87 GHz           │  ← Zero-field splitting
       │    │           │                  │
       │    │    ──────────────────────    │
       │    │         ms = 0               │  ← "Spin zero" (our |0⟩)
       │    │    ──────────────────────    │
       │    │           │                  │
       │    │       D ≈ 2.87 GHz           │
       │    │           │                  │
       │    │    ──────────────────────    │
       │    │         ms = -1              │  ← "Spin down"
       │    └──────────────────────────────┘
       │
       └──────────────────────────────────────


Key Points:
───────────

1. The ms = 0 state is LOWER in energy than ms = ±1
2. The energy gap D ≈ 2.87 GHz (microwave frequency!)
3. We use ms = 0 as |0⟩ and one of ms = ±1 as |1⟩

This 2.87 GHz gap is why we need a 2.87 GHz
microwave source for qubit control!

The Zero-Field Splitting: D = 2.87 GHz

The parameter D (zero-field splitting) arises from spin-spin interaction between the two unpaired electrons in the NV⁻ ground state:

Origin of Zero-Field Splitting
==============================

The two unpaired electrons in NV⁻
have a dipole-dipole interaction:

     ●───────●
     e₁      e₂

This interaction splits the ms = 0
state from ms = ±1 states by:

     D = 2.87 GHz

Temperature Dependence:
───────────────────────

At room temperature (300 K):   D ≈ 2.87 GHz
At low temperature (<10 K):    D ≈ 2.88 GHz

The shift is about -74 kHz/K

This allows NV centers to be used
as quantum thermometers!

Adding a Magnetic Field: Zeeman Splitting

When we apply an external magnetic field B along the NV axis, the degeneracy of ms = +1 and ms = -1 is lifted:

Effect of Magnetic Field
========================

Without B field:           With B field:
───────────────            ─────────────

       ms = ±1                  ms = +1 ← higher energy
    ═════════════               ═══════
         │                        │
      2.87 GHz                    │ γB (Zeeman shift)
         │                        │
    ═════════════              ms = -1 ← lower energy
       ms = 0                   ═══════
                                  │
                               2.87 GHz
                                  │
                               ═══════
                                ms = 0


The Zeeman shift is:
────────────────────

ΔE = γₑ · B

where:
γₑ = 2.8 MHz/G (electron gyromagnetic ratio)
B  = magnetic field strength in Gauss

For B = 100 G:
ΔE = 2.8 MHz/G × 100 G = 280 MHz

So the transitions become:
• ms = 0 → ms = +1 : 2.87 GHz + 280 MHz = 3.15 GHz
• ms = 0 → ms = -1 : 2.87 GHz - 280 MHz = 2.59 GHz

This allows us to ADDRESS each transition separately!

Complete Energy Level Diagram

Full NV⁻ Energy Level Structure
===============================

Energy ↑
       │
       │    ╔══════════════════════════════════════════╗
       │    ║           EXCITED STATE (³E)             ║
       │    ║                                          ║
       │    ║    ms = +1  ───────────                  ║
       │    ║                                          ║
       │    ║    ms = 0   ───────────                  ║
       │    ║                                          ║
       │    ║    ms = -1  ───────────                  ║
       │    ╚══════════════════════════════════════════╝
       │              │              │
       │              │              │
       │     Green    │              │ ISC (Inter-
       │     photon   │              │ system
       │     532 nm   │   Red        │ crossing)
       │     absorb   │   photon     │ to singlet
       │              │   637-750nm  │
       │              │   emission   │
       │              ▼              ▼
       │    ┌──────────────────────────────────────────┐
       │    │         METASTABLE SINGLET (¹A)          │
       │    │         (The "shelving" state)           │
       │    │                                          │
       │    │    Lifetime: ~250 ns                     │
       │    └────────────────────┬─────────────────────┘
       │                         │
       │                         │ Preferentially
       │                         │ decays to ms = 0
       │                         ▼
       │    ╔══════════════════════════════════════════╗
       │    ║           GROUND STATE (³A₂)             ║
       │    ║                                          ║
       │    ║    ms = +1  ───────────                  ║
       │    ║         │                                ║
       │    ║      2.87 GHz                            ║
       │    ║         │                                ║
       │    ║    ms = 0   ─────────── ← THE QUBIT      ║
       │    ║         │                  LIVES HERE    ║
       │    ║      2.87 GHz                            ║
       │    ║         │                                ║
       │    ║    ms = -1  ───────────                  ║
       │    ╚══════════════════════════════════════════╝
       │
       └──────────────────────────────────────────────────

---

Part 4: Optical Initialization and Readout

The key to using NV centers is the spin-dependent fluorescence.

Initialization: Preparing the |0⟩ State

Optical Spin Initialization
===========================

Goal: Force the electron spin into ms = 0 state

Process (Optical Pumping):
──────────────────────────

1. Shine green laser (532 nm) on NV center

2. All spin states absorb and get excited:

   ms = 0  → Excited state
   ms = ±1 → Excited state

3. From excited state, two things can happen:

   Path A: Direct radiative decay (emit red photon)
           Returns to SAME spin state

   Path B: Inter-system crossing (ISC) to singlet
           Then decays preferentially to ms = 0!


Why ms = ±1 gets "shelved":
───────────────────────────

The ISC rate from excited ms = ±1 is HIGHER
than from excited ms = 0!

   Excited ms = ±1 ─┬─► Red photon (some)
                    └─► Singlet (more likely) ─► ms = 0

   Excited ms = 0  ─┬─► Red photon (most)
                    └─► Singlet (less likely)


After ~1 μs of green illumination:
──────────────────────────────────

Population in ms = 0:  ~95%+
Population in ms = ±1: ~5%

The qubit is INITIALIZED to |0⟩!

Readout: Measuring the Qubit State

Optical Spin Readout
====================

Goal: Determine if spin is ms = 0 or ms = ±1

The Magic: SPIN-DEPENDENT FLUORESCENCE
──────────────────────────────────────

When we shine green laser:

  If spin is ms = 0:
  ──────────────────
  • Excited state decays radiatively
  • Emits MANY red photons
  • We see BRIGHT fluorescence

  If spin is ms = ±1:
  ───────────────────
  • Excited state often goes to singlet
  • Singlet doesn't emit (non-radiative)
  • We see FEWER red photons
  • Fluorescence is ~30% DIMMER


Detection Timeline:
───────────────────

Time (μs)
    0          0.3         0.6         1.0
    │           │           │           │
────┼───────────┼───────────┼───────────┼────►
    │           │           │           │
    │←─ Readout window ─→│  │← Re-init →│
    │  (count photons)    │             │
    │                     │             │
    │                     │             │


Photon Counting:
────────────────

         ▲ Photons
         │
     150 ┤     ████████████  ← ms = 0 (bright)
         │     ████████████
     100 ┤     ████████████
         │     ████████████  ← Threshold
         │     ████████████
      50 ┤     ████████████
         │     ▓▓▓▓▓▓▓▓▓▓▓▓  ← ms = 1 (dim)
       0 ┼─────────────────────────────►
              0.3 μs readout window

Threshold discrimination:
  Photons > threshold → measured |0⟩
  Photons < threshold → measured |1⟩

Contrast and Fidelity

Readout Fidelity Considerations
===============================

The fluorescence contrast (~30%) is not perfect.
This affects measurement fidelity.

Sources of Imperfect Contrast:
──────────────────────────────

1. Finite ISC probability from ms = 0
   (Some ms = 0 also goes dark briefly)

2. Background fluorescence
   (From diamond, optics, etc.)

3. Detector dark counts
   (False photon detections)

4. Optical collection efficiency
   (Not all photons collected)


Typical Single-Shot Fidelity:
─────────────────────────────

Without optimization:    ~70-80%
With SIL (solid immersion lens): ~85-95%
With photonic structures: 95%+

To improve:
• Average over many measurements
• Use charge-state check
• Implement adaptive protocols

---

Part 5: Electron Spin as a Qubit

Now let's understand how the electron spin encodes quantum information.

The Bloch Sphere Representation

Any qubit state can be visualized on the Bloch sphere:

Bloch Sphere for NV Center
==========================

The qubit state |ψ⟩ = α|0⟩ + β|1⟩ maps to a point
on the unit sphere:

                    |0⟩ (ms = 0)
                      ▲
                      │
                      │  θ
                      │ /
                      │/     |ψ⟩ = cos(θ/2)|0⟩ + e^(iφ)sin(θ/2)|1⟩
         ────────────●────────────►
                    /│\          Y
                   / │ \
                  /  │  \
               X ╱   │   ╲ φ (azimuthal angle)
                     │
                     │
                     ▼
                    |1⟩ (ms = 1)


Key States:
───────────

North pole:  |0⟩                     (θ = 0)
South pole:  |1⟩                     (θ = π)
Equator:     |+⟩ = (|0⟩ + |1⟩)/√2   (θ = π/2, φ = 0)
             |−⟩ = (|0⟩ − |1⟩)/√2   (θ = π/2, φ = π)
             |+i⟩ = (|0⟩ + i|1⟩)/√2 (θ = π/2, φ = π/2)
             |−i⟩ = (|0⟩ − i|1⟩)/√2 (θ = π/2, φ = 3π/2)


NV Center Physical Correspondence:
──────────────────────────────────

|0⟩ = ms = 0 state (electron spin along NV axis)
|1⟩ = ms = -1 or ms = +1 (we choose one)

The angle θ represents superposition of spin states
The angle φ represents the phase between them

The Qubit Hamiltonian

The energy of the NV center ground state is described by:

NV Center Ground State Hamiltonian
==================================

H = D·Sz² + γₑ·B·S + other terms

Where:
──────
D  = 2.87 GHz (zero-field splitting)
Sz = Spin-z operator (-1, 0, +1)
γₑ = 2.8 MHz/G (gyromagnetic ratio)
B  = Magnetic field vector
S  = Spin vector operator


Simplified (B along NV axis):
─────────────────────────────

H = D·Sz² + γₑ·Bz·Sz

Energy levels:
  E(ms = +1) = D + γₑBz
  E(ms = 0)  = 0
  E(ms = -1) = D - γₑBz


For qubit operation (using ms = 0 and ms = -1):
───────────────────────────────────────────────

Transition frequency:
ω₀₁ = D - γₑBz = 2.87 GHz - (2.8 MHz/G)·Bz

This is the frequency we need for microwave control!

---

Part 6: Quantum Gate Operations

How do we manipulate the qubit? With microwave pulses!

Rabi Oscillations: The Foundation of Control

When we apply a resonant microwave field, the spin oscillates between |0⟩ and |1⟩:

Rabi Oscillations
=================

Apply microwave at frequency ω₀₁ (resonance):

The spin state evolves as:

|ψ(t)⟩ = cos(Ωt/2)|0⟩ + i·sin(Ωt/2)|1⟩

Where Ω = Rabi frequency (depends on microwave power)


Bloch Sphere Picture:
─────────────────────

t = 0:        Start at |0⟩ (north pole)
              │
              ●
              │

t = π/(2Ω):   Now at |+i⟩ (equator)

          ●───

t = π/Ω:      Now at |1⟩ (south pole)
              │
              │
              ●

t = 3π/(2Ω):  Back at equator

t = 2π/Ω:     Back to |0⟩!


Population vs Time:
───────────────────

P(|1⟩) ▲
       │
   1.0 ┤     ●           ●           ●
       │    / \         / \         / \
   0.5 ┤   /   \       /   \       /   \
       │  /     \     /     \     /     \
   0.0 ┼●/───────\●──/───────\●──/───────►
       0   π/Ω   2π/Ω  3π/Ω   4π/Ω    Time

This oscillation is called "Rabi flopping"

Implementing Quantum Gates

Standard Quantum Gates via Microwave Pulses
============================================

IDENTITY (I): Do nothing
────────────────────────
Pulse: None (just wait)
Matrix: | 1  0 |
        | 0  1 |


PAULI-X (NOT gate): |0⟩ ↔ |1⟩
─────────────────────────────
Pulse: π pulse (180° rotation)
Duration: t = π/Ω
Phase: φ = 0
Matrix: | 0  1 |
        | 1  0 |

Timeline:
─────────────────────────────
MW:  ░░░░████████░░░░
         └── π ──┘


PAULI-Y: Rotation around Y
──────────────────────────
Pulse: π pulse (180° rotation)
Phase: φ = π/2
Matrix: | 0  -i |
        | i   0 |


PAULI-Z: Phase flip
───────────────────
Implementation: "Virtual Z gate"
Adjust phase of subsequent pulses
Matrix: | 1   0 |
        | 0  -1 |


HADAMARD (H): Creates superposition
───────────────────────────────────
Pulse: π/2 pulse around (X+Z)/√2 axis
Or: Ry(π/2) followed by Z
Matrix: 1/√2 | 1   1 |
             | 1  -1 |

|0⟩ → (|0⟩ + |1⟩)/√2
|1⟩ → (|0⟩ - |1⟩)/√2

Timeline:
─────────────────────────────
MW:  ░░░░████░░░░
         └π/2┘


ROTATION GATES:
───────────────

Rx(θ): Rotation around X-axis by θ
       Pulse: θ/π × (π pulse)
       Phase: 0

Ry(θ): Rotation around Y-axis by θ
       Pulse: θ/π × (π pulse)
       Phase: π/2

Rz(θ): Rotation around Z-axis by θ
       Virtual: adjust phase register


ARBITRARY ROTATION:
───────────────────

Any single-qubit unitary can be decomposed as:

U = Rz(α)·Ry(β)·Rz(γ)

So we only need:
1. Variable-duration MW pulses (for Ry)
2. Phase tracking (for Rz)

Pulse Sequence Example

Example: Creating |+⟩ = (|0⟩ + |1⟩)/√2
======================================

Starting state: |0⟩ (after initialization)

Step 1: Apply Hadamard gate
         This is a π/2 rotation around Y-axis
         followed by a Z rotation

Pulse Sequence:
───────────────

Time (ns)
    0        50       100      150      200
    │         │         │         │         │
────┼─────────┼─────────┼─────────┼─────────┼────►
    │         │         │         │         │
    │         │         │         │         │

Laser: ████████▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓████████████
       │ init │        gate time           │readout│
       │ ~1μs │                            │ ~300ns│

MW:    ░░░░░░░░░░░░████████░░░░░░░░░░░░░░░░░░░░░░░░░
                   │ π/2  │
                   │ ~50ns│

Detection: ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░████████████
                                          count photons


Result:
───────
State after: (|0⟩ + |1⟩)/√2

If we measure many times:
• ~50% will give |0⟩ (bright)
• ~50% will give |1⟩ (dim)

---

Part 7: Coherence Time - The Critical Metric

The coherence time determines how long your qubit remains "quantum" before decoherence destroys the information.

Types of Coherence Times

Coherence Time Metrics
======================

T1: Longitudinal (Energy) Relaxation Time
─────────────────────────────────────────

• Time for |1⟩ to decay to |0⟩
• Due to energy exchange with environment
• Sets ultimate limit on computation time

Measurement: Prepare |1⟩, wait time t, measure
             P(|1⟩) = exp(-t/T1)

NV at room temp: T1 ~ 6 ms (can be seconds at cryo)


T2: Transverse (Phase) Coherence Time
─────────────────────────────────────

• Time for superposition to lose phase coherence
• Due to fluctuating magnetic fields
• Usually T2 ≤ 2·T1

Measurement: Ramsey sequence (see below)

NV in natural diamond: T2 ~ 2 μs (free evolution)
                       T2 ~ 2 ms (with dynamical decoupling)
NV in isotopic C-12:   T2 ~ 1.8 s (!!)


T2*: Inhomogeneous Dephasing Time
─────────────────────────────────

• Observed in ensemble measurements
• Due to different NVs having different frequencies
• Usually T2* << T2

NV: T2* ~ 1-10 μs


Visual Comparison:
──────────────────

         Qubit "usable time"
         ────────────────────────────────►

         T2*      T2 (echo)      T1
         │        │              │
         ├────────┼──────────────┼─────────►
         1μs      2ms            6ms       Time

         │← Single-qubit gates work here →│

Measuring Coherence: Ramsey Experiment

Ramsey Sequence (Measures T2*)
==============================

The Ramsey experiment reveals coherence time:

Pulse Sequence:
───────────────

     π/2        Free evolution        π/2      Measure
      │         (time τ)               │          │
──────┼─────────────────────────────────┼──────────┼──────►
      │                                 │          │
      ▼                                 ▼          ▼
MW:  ████                              ████
     │  │◄─────── τ ───────────────►│  │
     └──┘                              └──┘


What Happens:
─────────────

1. First π/2 pulse: |0⟩ → (|0⟩ + |1⟩)/√2
                    Creates superposition
                    Puts state on equator

2. Free evolution: The |0⟩ and |1⟩ components
                   accumulate different phases
                   Phase difference: Δφ = δω × τ
                   (δω = frequency offset from resonance)

3. During τ: Environment causes random phase kicks
             Phase coherence gradually lost

4. Second π/2 pulse: Converts phase to population

5. Measure: P(|1⟩) oscillates with τ
            Amplitude decays with coherence loss


Result:
───────

P(|1⟩) ▲
       │
   1.0 ┤  ∼∼∼
       │ ∼   ∼∼     Decay envelope ~ exp(-τ/T2*)
       │∼     ∼∼
   0.5 ┼        ∼∼     ∼∼
       │          ∼∼ ∼∼  ∼∼ ∼∼∼─────────────────
       │
   0.0 ┼────────────────────────────────────────►
       0              τ                      Time

The oscillation frequency = detuning from resonance
The decay = coherence loss (T2*)

Extending Coherence: Dynamical Decoupling

Dynamical Decoupling Sequences
==============================

The environment causes slow phase fluctuations.
We can "echo" these out with additional pulses!


HAHN ECHO (Simplest):
─────────────────────

Sequence: π/2 - τ/2 - π - τ/2 - π/2 - measure

     π/2        τ/2         π         τ/2       π/2
      │          │          │          │          │
──────┼──────────┼──────────┼──────────┼──────────┼─────►
      │          │          │          │          │
MW:  ████       ░░░        ████       ░░░        ████
     │  │                  │    │                │  │
     π/2                    π                     π/2


How it works:
─────────────
• Slow fluctuations cause phase θ during first τ/2
• The π pulse "flips" the accumulated phase
• Same fluctuations cause -θ during second τ/2
• Net phase from slow noise: θ - θ = 0!

Result: T2 (echo) >> T2*


CPMG SEQUENCE (Multiple echoes):
────────────────────────────────

π/2 - (τ - π - τ)ₙ - measure

Repeat the π pulses n times
Each echo corrects more error

More pulses = longer coherence!


COMPARISON:
───────────

Sequence          │ Coherence Time
──────────────────┼────────────────
Free evolution    │ T2* ~ 1-10 μs
Hahn echo         │ T2 ~ 100-500 μs
CPMG (n=10)       │ T2 ~ 1-2 ms
CPMG (optimized)  │ T2 ~ 2+ ms

With isotopic diamond + CPMG:
T2 can reach 1.8 SECONDS at room temperature!

---

Part 8: Coherence Time Comparison

Coherence Time: NV vs Other Qubits
==================================

System                  │ Temp      │ T2 (Coherence)
────────────────────────┼───────────┼────────────────
Superconducting (IBM)   │ 15 mK     │ ~100-500 μs
Superconducting (Google)│ 15 mK     │ ~100 μs
Trapped ion (IonQ)      │ ~0°C      │ ~1-10 seconds
Trapped ion (Quantinuum)│ Room*     │ ~30 seconds
NV center (natural)     │ 300 K     │ ~1-2 ms
NV center (isotopic)    │ 300 K     │ ~1.8 s (!!)
Nuclear spin (NV N-14)  │ 300 K     │ ~minutes

* Vacuum chamber, but ions themselves are "warm"

KEY INSIGHT:
────────────
With isotopically pure C-12 diamond,
NV centers at ROOM TEMPERATURE have
LONGER coherence than superconducting
qubits at near absolute zero!

This is why NV centers are promising:
• Room temperature operation
• Long coherence times
• No dilution refrigerator needed

---

Part 9: The Mathematics (Accessible Overview)

Spin-1 System

The NV ground state is a spin-1 system. Here's the essential math:

Spin-1 Operators
================

The spin operators for S = 1:

Sx = (1/√2) | 0  1  0 |     Raises and lowers
             | 1  0  1 |     spin by ±1
             | 0  1  0 |

Sy = (1/√2) | 0  -i  0 |
             | i   0 -i |
             | 0   i  0 |

Sz =        | 1  0  0 |     Diagonal!
            | 0  0  0 |     Eigenvalues: +1, 0, -1
            | 0  0 -1 |

Basis states:
|+1⟩ = |1⟩   |0⟩   |-1⟩
       |0|   |1|   |0|
       |0|   |0|   |1|


For qubit operation, we select two levels:
|0⟩ = ms=0 state
|1⟩ = ms=-1 state (usually)

This gives us effective spin-1/2 (qubit) operations.

The Qubit Subspace

Effective Two-Level System
==========================

We restrict to the {|0⟩, |-1⟩} subspace:

Effective Hamiltonian (in rotating frame):

H_eff = (ℏ/2) | -Δ    Ω  |
              |  Ω    Δ  |

Where:
Δ = ω_drive - ω_01 = detuning
Ω = Rabi frequency (proportional to MW amplitude)


On resonance (Δ = 0):
────────────────────

H_eff = (ℏΩ/2) | 0  1 |
               | 1  0 |

This is proportional to σx (Pauli-X)!

Evolution: U(t) = exp(-iH_eff·t/ℏ)
                = exp(-iΩt·σx/2)
                = cos(Ωt/2)·I - i·sin(Ωt/2)·σx

This is exactly rotation around X-axis on Bloch sphere.

Decoherence Model

Simplified Decoherence
======================

The density matrix evolves as:

dρ/dt = -i[H,ρ]/ℏ + L[ρ]

Where L[ρ] describes decoherence.


For NV centers, main decoherence mechanisms:
────────────────────────────────────────────

1. T1 relaxation (energy decay):
   Rate Γ1 = 1/T1

   Lindblad: L1[ρ] = Γ1 (σ-·ρ·σ+ - (1/2){σ+·σ-, ρ})

2. T2 dephasing (phase randomization):
   Rate Γ2 = 1/T2 - 1/(2T1) = "pure dephasing"

   Lindblad: L2[ρ] = Γ2 (σz·ρ·σz - ρ)


Physical sources:
─────────────────

T1 decay:
• Spin-lattice relaxation
• Phonon emission/absorption
• Usually 6+ ms at room temp

T2 dephasing:
• C-13 nuclear spin fluctuations
• Other NV centers
• Surface spins
• Magnetic impurities

---

Part 10: Summary - The Physics Behind the Qubit

Let's consolidate everything we've learned:

NV Center Qubit: Complete Picture
=================================

PHYSICAL STRUCTURE:
──────────────────
Diamond + Nitrogen + Vacancy = NV center
NV⁻ (negative charge state) = 6 active electrons
Ground state = Spin triplet (S=1)

QUBIT ENCODING:
──────────────
|0⟩ = ms = 0 state
|1⟩ = ms = -1 state (or +1)
Energy gap = 2.87 GHz

WHY ROOM TEMPERATURE WORKS:
──────────────────────────
1. Diamond lattice shields spin from thermal noise
2. kT >> spin transition energy, but spin is isolated
3. Optical initialization works at any temperature
4. Decoherence dominated by C-13, not temperature

CONTROL MECHANISM:
─────────────────
Initialize: Green laser (532nm) → optical pumping to |0⟩
Manipulate: Microwave pulses at 2.87 GHz
            π pulse = X gate, π/2 pulse = Hadamard-like
Readout:    Green laser → count red photons
            Bright = |0⟩, Dim = |1⟩

KEY PARAMETERS:
──────────────
Zero-field splitting D:     2.87 GHz
Rabi frequency Ω:          ~10-50 MHz (typical)
Coherence T2*:             ~1-10 μs
Coherence T2 (echo):       ~2 ms (natural), ~1.8 s (isotopic)
Relaxation T1:             ~6 ms (room temp)

---

What's Next: Building the Hardware

With this physics foundation, you're ready to understand the hardware we'll build in Part 3. Every component has a purpose:

Hardware Components and Their Physics Purpose
=============================================

GREEN LASER (532 nm):
• Excites NV to excited state
• Enables optical pumping (initialization)
• Enables spin-dependent fluorescence (readout)

DICHROIC MIRROR:
• Reflects green (532 nm) toward sample
• Transmits red (637-750 nm) to detector
• Separates excitation from fluorescence

OBJECTIVE LENS:
• Focuses laser to ~1 μm spot
• Collects fluorescence efficiently
• NA determines collection efficiency

BANDPASS FILTER (650-750 nm):
• Blocks residual green light
• Passes only NV fluorescence
• Improves signal-to-noise ratio

PHOTODETECTOR (APD):
• Counts single photons
• Fast response (~ns)
• Low dark counts

MICROWAVE GENERATOR (2.87 GHz):
• Provides resonant drive for spin transitions
• Amplitude controls Rabi frequency
• Phase controls rotation axis

RF AMPLIFIER:
• Boosts MW power
• Needed for fast gates (~100 ns)

MICROWAVE ANTENNA:
• Delivers MW field to NV
• Loop or stripline geometry
• Field strength ~1-10 Gauss at NV

---

Exercises for the Motivated Reader

1. Calculate the Zeeman splitting: If you apply a 50 Gauss magnetic field along the NV axis, what are the two transition frequencies (from ms=0 to ms=±1)?

2. Estimate gate time: If your Rabi frequency is 20 MHz, how long is a π pulse? A π/2 pulse?

3. Coherence requirements: You want to run 100 quantum gates before significant decoherence. If each gate takes 100 ns, what minimum T2 do you need?

4. Photon counting: If your NV emits 100,000 photons/second when in |0⟩ and 70,000 photons/second when in |1⟩, how many photons do you need to count to distinguish the states with 99% confidence? (Hint: Poisson statistics)

---

Related Articles

---

References

Foundational Papers:

  • Doherty, M.W., et al. "The nitrogen-vacancy colour centre in diamond." Physics Reports 528.1 (2013): 1-45.
  • Maze, J.R., et al. "Properties of nitrogen-vacancy centers in diamond: the group theoretic approach." New Journal of Physics 13.2 (2011): 025025.
Coherence Times:
  • Balasubramanian, G., et al. "Ultralong spin coherence time in isotopically engineered diamond." Nature Materials 8.5 (2009): 383-387.
  • Bar-Gill, N., et al. "Solid-state electronic spin coherence time approaching one second." Nature Communications 4 (2013): 1743.
Control and Readout:
  • Robledo, L., et al. "Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond." New Journal of Physics 13.2 (2011): 025013.
---

Part 2 of 4 in the Room-Temperature Quantum Computing series. Last updated: February 2, 2026.

Share this article

Related Articles